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Abstract—Most natural language understanding break-
throughs occur in popularly spoken languages, while low-
resource languages are rarely examined. We pre-trained as well
as compared different Transformer-based architectures on the
Javanese language. They were trained on causal and masked
language modeling tasks, with Javanese Wikipedia documents as
corpus, and could then be fine-tuned to downstream natural lan-
guage understanding tasks. To speed up pre-training, we trans-
ferred English word-embeddings, utilized gradual unfreezing of
layers, and applied discriminative fine-tuning. We further fine-
tuned our models to classify binary movie reviews and find that
they were on par with multilingual/cross-lingual Transformers.
We release our pre-trained models for others to use, in hopes of
encouraging other researchers to work on low-resource languages
like Javanese.

Index Terms—Javanese Language Modeling, Low-resource
Languages, Natural Language Understanding, Transformers,
Deep Learning

I. INTRODUCTION

Natural language understanding is a particular field that
attained major groundbreaking results due to the recent ad-
vancement of deep learning [1]. However, most of these
milestones took place in high-resource languages that are
widely spoken such as English, Mandarin Chinese, and Hindi.

Languages like Javanese, Sundanese, Cebuano, and various
other regional languages have barely received any attention nor
practical benefits from deep learning researchers [2], mainly
due to data scarcity. The Javanese language, more specifically,
could greatly benefit from such works given that the language
is the 26th most spoken language in the world, with over 68
million speakers worldwide [3].

Multiple business processes could be aided with the pres-
ence of language models for uses like sentiment analysis,
neural machine translation, text generation, etc. This is very
much evident in generic, pre-trained language models like the
OpenAl GPT-3 [4] where various business use cases can be
implemented using the language model.

Catering to this issue, we aim to provide a baseline bench-
mark to the field of language modeling of the Javanese
language. And at the same time, hope to encourage other
researchers to work on natural language understanding of other
less popular languages.
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To do so, we compared and pre-trained different
Transformer-based [5] architectures such as the OpenAl GPT-
2 [6], BERT [7], RoBERTa [8], and DistilBERT [9] models
on causal and masked language modeling of the Javanese
language. The corpus used for pre-training consists of over
80 thousand Javanese Wikipedia articles on different topics.

To test out the resultant models, a two-step fine-tuning
to the task of text classification was performed, specifically
on Javanese movie reviews. Our single models were mostly
able to outperform a multilingual BERT model and traditional
machine learning algorithms in this task, while performing
similarly to an XLM-RoBERTa model. An ensemble of the
trained models was able to outperform larger multilingual
models. After training these different models, they are then
deployed via the Hugging Face Transformers Model Hub',
where other users could freely utilize our models’ pre-trained
weights.

Javanese
Indonesian
19.94%

Sundanese
Others

Fig. 1. Percentage of native speakers of languages in Indonesia [10].

II. RELATED WORKS

A. Deep Learning Language Models

Modeling a natural human language has proven to be one
of the hardest tasks to be performed by a computer, mainly
due to its complex structure and virtually limitless grammatical
rules. A method called deep learning [1] has shown promising
results as the algorithm figures out the underlying structure of

Thttps://hf.co/w11wo
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data without needing to be programmed explicitly — translat-
ing to the recent successes in the field of natural language
understanding.

The development of deep learning language model archi-
tectures commenced with the introduction of Recurrent Neural
Networks (RNN) [11]. Unlike ordinary neural networks, RNN
introduced the concept of time-dependency, where new data
are fed into the neural network in sequence over time. This
is parallel with the structure of languages, where the order of
words and composition of words are critical.

A multitude of RNN-like architectures built to cater to
issues faced by RNNs has been proposed previously. For
instance, the Long short-term memory (LSTM) network [12]
was introduced to deal with the problem of vanishing gradients
and exhibiting long-term dependency. LSTM differs from plain
RNN as it contains different gates: an input gate, an output
gate, and a forget gate. These gates help to control which
sections of information should be carried over by the network
in the long run.

B. Transformers

A major breakthrough in language modeling happened after
the introduction of the attention mechanism [13]. It is espe-
cially useful in the case where an encoder-decoder approach
is necessary like in neural machine translation, for example.
The attention mechanism works by training the model to
find parts of a source sentence that are relevant to a specific
part of the target sentence. This method is therefore optimal
in remembering long-term dependencies as reflected in most
natural languages.

The Transformer architecture takes the idea of attention and
takes it to the extreme of removing the usage of recurrence and
convolutions entirely [5]. Instead, it claims that the attention
mechanism is all that is needed to train an encoder-decoder
architecture.

Generally, the attention function is described as the follow-
ing equation:

KT
Attention(Q, K, V') = softmax (Q> V, (1

R
where () represents the attention vector, K being the keys of
the query and V' corresponding to its value, normalized by dj,
the dimension of either of the three vectors.

Transformers have become one of the most widely used
architectures for natural language processing due to their
superiority over other neural network architectures especially
for the case of sequence-to-sequence modeling. Furthermore, it
works well with a large amount of data, leveraging the model’s
large number of parameters, and is parallelizable in a multi-
accelerator setup.

C. Transfer-Learning

The Transformer architecture enables us to pre-train models
on large datasets, which can then be fine-tuned to downstream
tasks like text classification, summarization, translation, and
many others. The convention of transferring a general language

model to a downstream language model only started in recent
years. Such practice became popular after its initial successes
in the realm of Computer Vision.

Most image-related tasks nowadays transfer learn pre-
trained neural network weights trained on the ImageNet
dataset with over 14 million images and 20,000 categories
[14]. Rather than training the model to learn from randomly
initialized weights, the practice of transfer-learning is proven
to be more effective in terms of saving up training time as
well as achieving a more accurate result [15].

Unsurprisingly, transfer-learning was successfully imple-
mented on language models and produced state-of-the-art
results. One of the earliest natural language transfer-learning
techniques called Universal Language Model Fine-tuning
(ULMFiT) [16], did not only reduce error rates on text
classification, but also significantly reduced the amount of
data required for training. Transfer-learning is also shown
to benefit greatly from discriminative fine-tuning, whereby
different layers of the neural network are trained with different
learning rates.

Unfortunately, it’s quite difficult and tedious to transfer learn
and fine-tune these Transformer models and apply them to
specific tasks. Catering to this issue, Hugging Face’s Trans-
formers library enables us to fine-tune different pre-trained
Transformers and easily apply them to various downstream
tasks [17].

This open-source library stores a wide variety of Trans-
former architectures in a centralized hub under a unified API,
enabling us to play around with different models, compare
them, and apply them to a variety of different tasks with
relative ease. Given that the framework is easily extensible
and fast, it is, therefore, the framework of choice to training
our Javanese language models.

D. Javanese Language Modeling

Before our work, other related researches similarly attempt
to perform language modeling on the Javanese language. Most
of them, however, immediately jumps to downstream tasks
of POS tagging [18] and text classification [19], without
providing a general language model. Those models are thus
unable to be fine-tuned to other downstream natural language
understanding tasks.

More versatile approaches include the training of a multilin-
gual Transformer-based language model using a multilingual
corpus that includes the Javanese language in it. For instance,
a BERT model [7] could be trained on Wikipedia texts
consisting of multiple languages at once. Alternatively, a cross-
lingual language model like XLM [20] could do similarly
given a large, multilingual corpus.

E. Transformer Architectures

Since the publication of the Transformer paper [5], there
have been multiple renditions to the original architecture, each
with its own capabilities and limitations.
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1) OpenAl GPT-2: The OpenAl GPT-2 [6] is a huge
Transformer-based language model with approximately 1.5
billion parameters in its largest rendition, trained on a dataset
of 8 million web pages. It is the successor of the first GPT
architecture [21] and is similarly trained based on a causal
language modeling task and achieved 7 out of 8 state-of-
the-art results in a zero-shot setting. This research proves
that the language model can learn to do tasks like reading
comprehension, summarization, translation, etc., without any
explicit supervision, and in turn, it studied the natural occur-
ring demonstration.

2) BERT: Like the OpenAl GPT-2, BERT is a pre-trained
language model [7] trained on English Wikipedia documents
and BooksCorpus [22]. However, it is intrinsically differ-
ent from ordinary sequence-to-sequence models as BERT
is naturally bidirectional. Furthermore, it is trained on two
tasks: masked language modeling and next-sentence prediction
(NSP) tasks. BERT achieved state-of-the-art results on GLUE
[23], MultiNLI [24], and SQuAD [25] benchmarks.

There have been further modifications to the original BERT
model, some of which aim to reduce the training time of
BERT. As an example, the ALBERT model [26] applies
parameter-reduction techniques which shrink the model’s pa-
rameters and, in turn, reduces memory consumption while
speeding up its training time. Similarly, the DistiIBERT model
[9] implements knowledge-distillation [27], [28] and thus
proposes a lighter, yet equally as effective, modification to
the original BERT. DistilBERT restored 97% of BERT’s
performance while being 60% faster and 40% smaller in size.

3) RoBERTa: While BERT has proven to be effective
in most natural language understanding tasks, authors of
RoBERTa have shown that the BERT model was in fact
undertrained [8]. Unlike BERT, RoBERTa removes the next-
sentence prediction task and increases the number of data for
pre-training. As a result, they outperformed BERT’s results in
SQuAD [25], MNLI [24], and RACE [29] benchmarks.

III. METHODOLOGY

We propose the following research pipeline reflected in
Figure 2. It follows the regular transfer-learning pipeline that
has been used in various other NLU training schemes such as
BERT [7] and ULMFiT [16], to name a few.
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Fig. 2. Research Methodology Pipeline

A. Dataset

The dataset used to train the language model is a collection
of the latest 80,000 Javanese Wikipedia articles retrieved in
December 2020. Such a collection is also known as Wikitext
and is often used to pre-train language models like BERT
[7]. Advantages of using Wikitext as our pre-training cor-
pus include its rich vocabulary and diverse topics to better
generalize our language model. However, this does mean
that the quality of our pre-training dataset, and hence the
output of our language models, depends wholly on the quality
of text written by different Javanese Wikipedia contributors
with various levels of writing ability. Nonetheless, the main
purpose of using Wikipedia text for pre-training is to simply
teach linguistic context to the language model and thus may
carry over the fluency level and biases of the authors of the
Wikipedia texts. In total, the documents accumulate to a total
size of 319MB.

Training language models with a task of causal language
modeling and masked language modeling do not require us
to provide labels, i.e. they are self-supervised. In other words,
the training method relies merely on the corpus itself. As for
causal language modeling, the labels are simply the next word
in the sequence. While for masked language modeling, the
masked-out words are the labels to be predicted by the model.

B. Pre-processing

There are several possible ways to encode text data into
numeric representations interpretable by a neural network.
Different language modeling tasks require different labeling
methods of their own. Nevertheless, the general pre-processing
pipeline of all four of our models is as depicted in Figure 3.
Like the main pipeline we proposed in Figure 2, this pre-
processing scheme follows the regular practices of handling
text data for language models.

Load Raw Dataset

Train Tokenizer on Dataset

Tokenize Dataset

Group Texts into Sequences

Collate Data for Training

Fig. 3. Data Pre-processing Pipeline

1) Tokenization: To begin with the pre-processing pipeline,
a corpus of words is required to lay out all the possible
vocabularies and list the respective token’s encoded value.
For our GPT-2-based and RoBERTa-based models, Hugging
Face’s implementation of Byte-level Byte-Pair Encoding To-
kenizer [30] is used to tokenize our dataset. The tokenizer
starts by building byte base tokens of all possible characters
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and later learns to merge them into subwords according to
their frequency occurrence.

The GPT-2-based model’s tokenizer is set to have a vo-
cabulary size of 50,257, while the RoBERTa-based model’s
tokenizer has a vocabulary size of 50,265. Their vocabulary
sizes accord to their respective English models’ tokenizers and
the same special tokens used in the English models were added
to the tokenizer as well.

On the other hand, our BERT-based and DistilBERT-based
model used Hugging Face’s implementation of BERT’s Word-
Piece Tokenizer [31]. This tokenizer is very similar to the
Byte-level Byte-Pair Encoding Tokenizer, but is different in
terms of selecting which subwords were to be formed. Instead
of choosing the most frequent byte-pairs to be merged, it
forms a new subword that maximizes the likelihood of the
subword being used as training data once added to the vocab-
ulary. Unlike the two previous models, the BERT-based and
DistilBERT-based model has a significantly smaller vocabulary
size of 30,522.

2) Text-Grouping: Once these tokenizers have been suc-
cessfully trained, the corpus is encoded into their correspond-
ing numerical-token representations and their designated spe-
cial tokens along with attention masks are added to facilitate
the Transformer input pipeline.

Moreover, these encoded texts are grouped into different
sequences to limit the sequence length per input. Specifically,
they are grouped into blocks/sequences of size 128, whereby
longer sequences are thus split into shorter subsequences, and
shorter sequences are concatenated together.

3) Data Collation: Finally, the grouped texts are collated
according to the different language modeling tasks. Causal
language modeling doesn’t require this specific step since no
special operations are required to facilitate training. Masked
language modeling, however, relies on this step to apply
random masking. The masking probability of each token, such
that it may become a label for training, is set to 0.15.

C. Language Model Pre-training

1) Transfer-Learning: Once the pre-processing of data is
finished, the pre-training of each Transformer-based language
model then proceeds. The base models pre-trained include the
OpenAl GPT-2 [6], BERT [7], DistilBERT [9] and RoBERTa
[8], all of which utilize Hugging Face’s open-source imple-
mentation with a PyTorch [32] backend. 20% of the pre-
processed dataset was also left for validation purposes.

Rather than initializing our models’ weights from scratch,
the respective English models were loaded. Namely, the pre-
trained weights of the OpenAl GPT-2 model, the BERT
base model (uncased), the RoBERTa base model, and the
DistilBERT base model (uncased), were initialized to become
the bases of our Javanese language models. All of these
pre-trained weights were retrieved from the Hugging Face
Transformers Model Hub.

Since the English models were trained in a completely
different corpus, their embedding representations are thus
irrelevant to our language model. However, there may be

identical tokens in both corpora. Therefore, if an identical
token was to be found in the English corpus, its corresponding
embedding representation is brought to our Javanese language
model. Otherwise, if the token is non-existent in the English
corpus, the mean of all English word embeddings weights were
used for that particular token.

This approach is very much like the fine-tuning process
proposed in ULMFiT [16] and is effective in the training of
GPorTuguese-2 [33], a Portuguese GPT-2-based causal lan-
guage model. This way, the word-embeddings of our Javanese
language model are semi-pre-trained and already contain sev-
eral representations of tokens in the Javanese corpus.

2) Gradual Unfreezing and Discriminative Fine-tuning:
During training, gradual unfreezing and discriminative fine-
tuning are applied as suggested in the ULMFiT paper [16].
Instead of training all of our models’ layers at one go, only
the last few layers are first trained for a few epochs, while the
remaining layers are kept frozen.

In the proceeding epochs, the preceding last few layers were
gradually unfrozen and are trained in a lower learning rate.
This process is repeated until all the layers in the model are
unfrozen. Table I reflects our setup in more detail.

TABLE I
GRADUAL UNFREEZING AND DISCRIMINATIVE FINE-TUNING SETUP IN
PRE-TRAINING.

Epoch Block to Unfreeze Learning Rate
1 Embeddings & Head 2 x 1073
2 Blocks 9-12 1x1073
3 Blocks 5-8 5x 1074
4-5 Blocks 1-4 5x 1077

Further, all phases of training are facilitated by the AdamW
optimizer [34], coupled with linear annealing of the set learn-
ing rate. As for the remaining hyper-parameters, the default
values in Hugging Face’s TrainingArguments are used.

D. Language Model Fine-tuning

1) Javanese IMDb Movie Reviews Dataset: As of the time
of writing, there are no open-source Javanese classification
datasets. To test out our pre-trained models, we prepared
a Javanese version’ of the IMDb Movie Reviews dataset
[35] by translating the original English dataset to Javanese.
Specifically, the translation process was handled by a multi-
lingual MarianMT Transformer, opus—-mt-en-mul [36].

Although the translation model managed to achieve a BLEU
score of 7.8 on the official Tatoeba benchmark dataset, its
translation output may not always be perfect. Regardless, it
remains as one of the best English-to-Javanese translation
models and is hence the translator of choice when it comes
to creating this dataset. It does mean that the quality of the
translated dataset depends fully on the quality of the translation
model, but nevertheless provides a trivial way of creating
a quick benchmark dataset on a low-resource language like
Javanese.

Zhttps://hf.co/datasets/w11wo/imdb-javanese
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Like the original version, the Javanese IMDb dataset com-
prises 25,000 movie reviews for training and another 25,000
for testing. Additionally, there are 50,000 unlabeled movie
reviews for the first half of the fine-tuning process. There are
only two possible categories in the dataset: either a positive
or a negative review.

2) Two-step Fine-tuning: To then apply our pre-trained
language model on a downstream task like text classification,
a two-step fine-tuning is conducted to our models.

Firstly, our Javanese language models were fine-tuned, with
the same language modeling task, on the IMDb Movie Review
corpus, such that it would gain an understanding of movie
review-related texts. Just as its pre-training process, this step
is self-supervised and could thus use the entire 100,000 movie
reviews available. Those movie reviews undergo the same pre-
processing pipeline as the data used during the pre-training
process. In the first fine-tuning step, all the models used a
learning rate of 2 x 1075 and are trained for a total of 5
epochs.

Afterward, to perform classification, the models were fine-
tuned by replacing their language model head with a fully
connected layer. The final layer outputs the same number of
neurons as the number of possible target classes, i.e. 2, for
5 epochs with a learning rate of 2 x 107° as well. Like the
pre-training stage, the two-step fine-tuning process used the
AdamW optimizer [34] and linear annealing of the set learning
rate.

IV. RESULT AND DISCUSSION

Different experiments were conducted according to the
setup described in Section III. It began with the pre-training
stage where the respective English language models are first
transferred to the Javanese Wikipedia corpus. After pre-
training, the language models are then fine-tuned with the
same respective tasks on the Javanese IMDb movie review
dataset. Table II describes the perplexity achieved by the
different models on the validation subsets of the two corpora.

TABLE II
PERPLEXITY OF THE TRAINED JAVANESE LANGUAGE MODELS.
Model #iparams LM Task Wikipedia IMDb
Javanese BERT 110M Masked 22.00 19.87
Javanese RoOBERTa 124M Masked 33.30 20.83
Javanese DistilBERT 66M Masked 23.54 21.01
Javanese GPT-2 124M Causal 25.39 60.54

Finally, at the last step of fine-tuning, the language models
learned to classify Javanese movie reviews with the replace-
ment of their language model head with a fully connected
layer that outputs the two possible target classes.

To compare our results, we also performed the same clas-
sification task using a multilingual mBERT model [7], a
cross-lingual XLM-RoBERTa model [37], and scikit-learn’s
[38] traditional machine learning algorithms such as Logistic
Regression and Multinomial Naive Bayes classifier. We also
performed a simple mean-probability ensembling on four of

our monolingual models. Table III shows the accuracy of every
model on the test subset.

TABLE III
RESULT OF TEXT-CLASSIFICATION ON JAVANESE IMDB MOVIE REVIEW
TEST SET.
Model #params  Accuracy

Javanese BERT 110M 76.37
Javanese RoBERTa 124M 71.70
Javanese DistilBERT 66M 76.04
Javanese GPT-2 124M 76.70
Ensembling - 78.92
mBERT 16"™™M 76.13
XLM-RoBERTa 278M 78.13
Logistic Regression with Count Vectorizer 91K 73.45
Logistic Regression with TF-IDF Vectorizer 91K 73.61
Naive Bayes with Count Vectorizer - 70.84
Naive Bayes with TF-IDF Vectorizer - 70.67

Out of all the models we have pre-trained, our Javanese
RoBERTa model achieved the highest accuracy of 77.7% on
the test subset of the Javanese IMDb movie review dataset,
despite it having a higher perplexity compared to our Javanese
BERT model. It should, however, be noted that the former has
more parameters than the latter, which could explain the slight
difference in classification results.

Compared to the benchmark models, most of our single
models were able to outperform both the multilingual mBERT
model as well as the baseline traditional models. However,
they were all unsurprisingly outperformed by the XLM-
RoBERTa model which has more than twice the number
of parameters. Moreover, XLM-RoBERTa is trained on over
2.4TB of data, which allows the large model to generalize
to multilingual tokens that may be present in the dataset,
hence the slightly better classification result. Regardless, the
ensembled model of all four of our models yielded the highest
accuracy score of 78.92%.

Before XLM-RoBERTa, most low-resource downstream
language tasks are done using the mBERT model since it
provides a quick result compared to training an entirely new
monolingual model. But as our results show, monolingual pre-
trained models perform better than mBERT for low-resource
languages like Javanese.

We suspect that if there are more Javanese datasets to
pretrain on, i.e. Javanese being a high-resource language like
English or Chinese, these monolingual models would easily
outperform their multilingual counterparts. A trivial example
of this case is clearly the English language where monolingual
models could outperform large multilingual models, despite
being smaller in size; mainly due to the discrepancy in the
pre-training dataset size and chosen tokenizer [39].

As for the traditional machine learning algorithms, they
displayed a decent result in classifying text data since the
dataset is pre-processed using either Count Vectorizer or TF-
IDF Vectorizer; producing high dimensional, sparse data. They
thus serve as a good and quick baseline for text classification
where these models are generally performant.

Overall, the results that our models attained are in line with
what their respective papers have concluded. For instance,
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the DistilBERT-based model was able to recover over 97%
of the BERT-based model’s result. Likewise, the RoBERTa-
based model outperformed the BERT-based model like its
paper suggested, while GPT-2-based performed similarly to
the BERT-based model.

Ensembling of the four models led to an even greater
accuracy compared to the single models and the larger mul-
tilingual models. Moreover, the usage of gradual unfreezing
and discriminative fine-tuning helped us to train these models
faster compared to training without the two regimes.

A. Impact of Transferring English Word-Embeddings

As outlined in Section III.C.1, our Javanese language
models’ word-embeddings were not initialized from scratch.
Rather, they copy the embedding weights of tokens that exist in
both English and Javanese corpora. This greatly sped up our
model’s learning process given that it has prior knowledge
of a significant amount of tokens shared between the two
vocabularies.

This method, however, came with a side-effect of creating a
partially bilingual model, since some of the English tokens are
carried over. In theory, our models should at least understand
some context in the English language — though the Javanese
language remains as their main language. To test this idea out,
we evaluated our Javanese IMDb movie review classifier on
the original English IMDb movie review [35] test set, without
further fine-tuning. Table IV reflects the classification result
of our models.

TABLE IV
EVALUATION RESULT OF TEXT-CLASSIFICATION ON ENGLISH IMDB
MOVIE REVIEW TEST SET.

Model #params  Accuracy
Javanese BERT 110M 69.93
Javanese RoOBERTa 124M 80.07
Javanese DistilBERT 66M 65.12
Javanese GPT-2 124M 71.18

As shown in Table IV, our Javanese RoBERTa IMDb clas-
sifier achieved the highest accuracy in the task of classifying
the test set of English IMDb movie reviews. Although these
results could barely compete with the original English models,
it is interesting to analyze why the RoBERTa-based model
achieved a significantly higher accuracy out of all the four
models trained.

The possible reason behind these results is likely because,
during the first pre-training stage, the ROBERTa-based and the
GPT-2-based models copied 11,959 and 11,954 embedding
vectors from the English corpus respectively. On the other
hand, the BERT-based and the DistilBERT-based models only
copied 7,656 and 7,655 embedding vectors from the English
corpus respectively.

Given the difference in vocabulary sizes and the number
of English tokens copied, it is thus unsurprising that the
RoBERTa-based model was able to achieve an evaluation
accuracy of 80.07% without the need to be fine-tuned to the

English IMDb dataset. It remains unclear why the GPT-2-
based model wasn’t able to emulate the same result as the
RoBERTa-based model despite it having a similar vocabulary
size and the number of English tokens carried over.

V. CONCLUSION

We pre-trained and compared different Transformer-based
Javanese language models on two different tasks of causal and
masked language modeling. In the process, we applied transfer
learning, gradual unfreezing, and discriminative fine-tuning
which greatly sped up the training process. Finally, we fine-
tuned these language models on the task of text classification
of the IMDb movie review dataset which has been translated
into the Javanese language. Our ensembled model was able to
attain an accuracy of 78.92% in classifying between positive
and negative reviews.

With these pre-trained models, we could perform other
downstream natural language understanding tasks in the Ja-
vanese language, such as extractive question answering, sum-
marization, named entity recognition, and many others. These
language models could attain better results if a greater and
more diverse corpus was used during pre-training. It might
also be helpful to establish a strong and robust benchmark
dataset of the Javanese language, like that of GLUE [23],
to standardize the field of Javanese language modeling and
encourage other researchers to work on this very language.
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